One Dimensional Locally Connected S - spaces ∗
نویسندگان
چکیده
We construct, assuming Jensen’s principle ♦, a one-dimensional locally connected hereditarily separable continuum without convergent sequences.
منابع مشابه
On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملOne Dimensional Locally Connected S - spaces ∗ Joan
We construct, assuming Jensen’s principle ♦, a one-dimensional locally connected hereditarily separable continuum without convergent sequences.
متن کاملUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کاملOn the Fundamental Groups of One–dimensional Spaces
We study the fundamental group of one–dimensional spaces. Among the results we prove are that the fundamental group of a second countable, connected, locally path connected, one–dimensional metric space is free if and only if it is countable if and only if the space has a universal cover and that the fundamental group of a compact, one–dimensional, connected metric space embeds in an inverse li...
متن کاملOn Holonomy Covering Spaces
Introduction. In [l] L. Markus and the author introduced the concept of holonomy covering spaces for flat affinely connected manifolds or what are also called locally affine spaces. We also proved in [l ] that the holonomy covering space of a complete « dimensional locally affine space must be some « dimensional cylinder, i.e., T^XF"-*, i = 0, •■-,«, where T* denotes the locally affine i dimens...
متن کامل